
John A. Reed
The University of Toledo, Toledo, Ohio

Gregory J. Follen
Glenn Research Center, Cleveland, Ohio

Abdollah A. Afjeh
The University of Toledo, Toledo, Ohio

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation

NASA/TM—2000-209953

May 2000

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

NASA/TM—2000-209953

May 2000

National Aeronautics and
Space Administration

Glenn Research Center

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation
John A. Reed
The University of Toledo, Toledo, Ohio

Gregory J. Follen
Glenn Research Center, Cleveland, Ohio

Abdollah A. Afjeh
The University of Toledo, Toledo, Ohio

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A03

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Price Code: A03

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

sive.

ires a

elity

s, and

on

and

paper

, and

.

Abstract

Designing and developing new aircraft systems is time-consuming and expen

Computational simulation is a promising means for reducing design cycle times, but requ

flexible software environment capable of integrating advanced multidisciplinary and multifid

analysis methods, dynamically managing data across heterogeneous computing platform

distributing computationally complex tasks. Web-based simulation, with its emphasis

collaborative composition of simulation models, distributed heterogeneous execution,

dynamic multimedia documentation, has the potential to meet these requirements. This

outlines the current aircraft design process, highlighting its problems and complexities

presents our vision of an aircraft design process using Web-based modeling and simulation

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation

John A. Reed

Gregory J. Follen

Abdollah A. Afjeh

The University of Toledo

Toledo, Ohio 43606

John H. Glenn Research Center

Cleveland, Ohio 44135

National Aeronautics and Space Administration

The University of Toledo

Toledo, Ohio 43606
1NASA/TM—2000-209953

e on

pete

cycle

) and

o the

and

s [17].

ts and

to fully

sign

ents in

lessly

ectures

on a

earch,

nues

of a

tion

cture)

ould

ment

object

rnet
1 Introduction

Intensive competition in the commercial aviation industry is placing increasing pressur

aircraft manufacturers to reduce the time, cost and risk of product development. To com

effectively in today’s global marketplace, innovative approaches to reducing aircraft design-

times are needed. Computational simulation, such as computational fluid dynamics (CFD

finite element analysis (FEA), has the potential to compress design-cycle times due t

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs

because it can be used to integrate multidisciplinary analysis earlier in the design proces

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environmen

geographically separated design teams, continue to restrict the use of these tools. In order

realize the potential of computational simulation, improved integration in the overall de

process must be made. The opportunity now exists to take advantage of recent developm

information technology to streamline the design process so that information can flow seam

between applications, across heterogeneous operating systems, computing archit

programming languages, and data and process representations.

The World Wide Web has emerged as a powerful mechanism for distributing information

very large scale. In its current form, it provides a simple and effective means for users to s

browse, and retrieve information, as well as to publish their own information. The Web conti

to evolve from its limited role as a provider of static document-based information to that

platform for supporting complex services. Much of this transformation is due to the introduc

of object technologies, such as Java and CORBA (Common Object Request Broker Archite

[36] within the Web. The integration of object technology represents a fundamental (some w

say, revolutionary) advancement in web-technology. The web is no longer simply a docu

access system supported by the somewhat limited protocols. Rather, it is a distributed

system with which one can build general, multi-tiered enterprise intranet and inte

applications.
2NASA/TM—2000-209953

ch to

sed

ogies

tion,

video,

ircraft

odel

ion 2,

xities

-based

e are

trating

ircraft

ject-

Web-

ngine

iples

based

f the

sion.

cally
The integration of the Web and object technology enables a fundamentally new approa

simulation:Web-based simulation. A Web populated with digital objects models of physical

counterparts will lead to model development by composition using collaborative Web-ba

environments [9]. Model execution will occur across networks using Web-based technol

(e.g., Java) and distributed simulation techniques (e.g., CORBA). Finally, simulation execu

models, and other related data will be documented using forms of hypermedia (hypertext,

virtual models, etc.).

Web-based simulation has the potential to provide the necessary tools to improve the a

design process through integration and support for collaborative modeling and distributed m

execution. In the remainder of this paper, we examine how this might be achieved. In Sect

we provide a brief overview of the aircraft design process, drawing attention to the comple

of the process and its inherent problems. Section 3 provides a review of the area of Web

simulation, and singles out several principles of Web-based simulation that we believ

important in the aircraft design process. In Section 4, we present an example scenario illus

how Web-based modeling and simulation might be used in that process, and discuss a

model development and distribution using the Onyx simulation framework. Onyx’s ob

oriented component model, visual environment for model assembly, and support for both

based and distributed object execution are explained in context of the integration of a jet e

within the aircraft. Lastly, in Section 5, the relationships to the Web-based simulation princ

outlined in Section 3 are identified and discussed, as are general implications of Web-

simulation on the design process.

2 The Aircraft Design Process

The aircraft design process can be divided into three phases:conceptual design, preliminary

design, anddetailed design. The conceptual design phase identifies the various conditions o

mission, and synthesizes a set of initial aircraft configurations capable of performing the mis

For commercial aircraft, the mission is defined by airline company demands, which typi
3NASA/TM—2000-209953

lume

ty of

signs.

e the

ntly so

. In the

ystems,

detail

sign

control

nsfer,

linary

nalysis

me is

AD)

ns of

e-off

mance

n rate.

uctural

rious

ments

climb

ontal

sign
include payload requirements, city-to-city distance along a proposed service route, traffic vo

and frequency, and airport compatibility. If the conceptual design effort confirms the feasibili

the proposed mission, management may decide to proceed with one or more preliminary de

In the preliminary design phase, more detail is added to the aircraft design definition. Her

aerodynamic shape, structural skeleton and propulsion system design are refined sufficie

that detailed performance estimates can be made and guaranteed to potential customers

final design phase, the airframe structure and associated sub-systems, such as control s

landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete

[17].

The design of an aircraft is an inherently complex process. Traditional preliminary de

procedure decomposes the aircraft into isolated components (airframe, propulsion system,

system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat tra

acoustics, etc.) which affect their performance. The normal approach is to perform discip

analysis in a sequential manner where one discipline uses the results of the preceding a

(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airfra

the first step in the preliminary design process. Using the initial Computer-aided Design (C

geometry definitions resulting from the conceptual design studies, aerodynamic predictio

wing and fuselage lift and drag are computed. Key points in the flight envelope, including tak

and normal cruise, are evaluated to form a map of aerodynamic performance. Next, perfor

estimates of the aircraft’s propulsion system are made, including thrust and fuel consumptio

The structural analysis uses estimates of aerodynamic loads to determine the airframe’s str

skeleton, which provides an estimate of the structure weight.

Complicating the design process is the fact that each of the disciplines interacts to va

degrees with the other disciplines in the minor analysis loop. For example, the thrust require

of the propulsion system will be dependent on the aerodynamic drag estimates for take-off,

and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horiz

and vertical tail, which in turn influence the design of the control system. For an efficient de
4NASA/TM—2000-209953

iplines

inor

ing is

must

oduct

ns.

ey

e to

nd

puter

ork-

ess,

 sys-

s,

pa-

e pro-

. In

h level
process, fully-updated data from one discipline must be made accessible to the other disc

without loss of information. Failure to identify interactions between disciplines early in the m

design cycle can result in serious problems for highly integrated aircraft designs. If the coupl

not identified until the system has been built and tested experimentally, then the system

undergo another major cycle iteration, further increasing the time and expense of pr

development.

There are many factors that can make the design process less efficient. These include:

(1) Lack of interoperability. Numerous software packages CAD, solid modeling, FEA,

CFD, visualization, and optimization are employed to synthesize and evaluate desig

These tools are often use different, possibly proprietary, data formats. As a result, th

generally do not interoperate, and require manual manipulation when passing data

between applications. Although in some cases, custom translation tools are availabl

“massage” the data into the appropriate format, users still spend considerable time a

effort tracking data and results as well as preparing, submitting and running the com

applications [28].

(2) Heterogeneous computing environments. The aircraft design computing environment is

extremely heterogeneous, with platforms ranging from personal computers, to Unix w

stations, to supercomputers. To use the various software required in the design proc

users are forced to become familiar with different computer architectures, operating

tems and programming languages.

(3) Geographically separated design groups. Multidisciplinary design and analysis is fre-

quently carried out by geographically dispersed engineering groups. In special case

entire subsystems may be designed and developed by third-party contractors or com

nies. The propulsion sub-system, for example, is designed and built separately by th

pulsion company, and delivered to the aircraft company for installation in the aircraft

any case, geographic separation places pressure on the designers to maintain a hig

of interaction during the design process so that loss of data is minimized.
5NASA/TM—2000-209953

ftware

essly

ata and

ch an

as a

pted

n an

to

ork

d and

wing

ractice

tifies

ation

s that

rchers

ick’s

apture

rds

ror"

s and
Improving the design process, therefore, requires the development of an integrated so

environment which provides interoperability standards so that information can flow seaml

across heterogeneous machines, computing platforms, programming languages, and d

process representations. We believe that web-based simulation tools can provide su

environment.

3 Principles of Web-based Simulation

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged

powerful tool for connecting people and information on a global scale. Built on broadly acce

protocols, the WWW removes incompatibilities between computer systems, resulting i

“explosion of accessibility” [2, 30]. Within the simulation community this proliferation has led

the establishment of a new area of research Web-based simulation involving the exploration

of the connections between the WWW and the field of simulation. Although the majority of w

in web-based simulation to date has centered on re-implementation of existing distribute

standalone simulation software using Web-related technologies, there is gro

acknowledgement that web-based simulation has the potential to fundamentally alter the p

of simulation [11].

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] iden

many potential effects of web-based simulation, with attention given to three key simul

areas: (1) education and training, (2) publications, and (3) simulation programs. He conclude

there is great uncertainty in the area of Web-based simulation, but advises simulation resea

and practitioners to move forward to incorporate Web-based technologies. Building on Fishw

observations, Page and Opper [25] present six principles of web-based simulation which c

the vision of future simulation practice: (1) digital object proliferation, (2) software standa

proliferation, (3) model construction by composition, (4) increased use of “trial and er

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architecture

multi-language systems.
6NASA/TM—2000-209953

ing

lation

d to

ore

iented

iented

eld of

essful

se as

ather

gital

d data

the

ssful

veral

4]; the

e, can

. The

class
In the remainder of this section, we briefly review several of these principles. In the follow

sections, we will examine in more detail how each apply to both the development of a simu

environment, and to the improvement of the aircraft design process.

3.1 Digital Objects.

In the mid 1960’s a pioneering simulation language called Simula-67 [3] was develope

more faithfully model objects in the physical world. Simula-67 introduced many of the c

design concepts (e.g., classes and objects) which form the foundation for the object-or

programming paradigm. Since that time, object-oriented technologies, such as object-or

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the fi

simulation. Today, the majority of simulation languages, as well as many of the most succ

general purpose-languages, are object-oriented.

The importance of objects in simulation applications naturally leads us to consider their u

part of the WWW infrastructure. The WWW, however, is currently based on documents, r

than objects. In the future, though, it is envisioned that the Web will be populated by di

objects, with documents being just one type of object. The objects, representing models an

for use in simulation environments, will be made available for use through publication on

WWW [9].

Indications of a transition to an object-based WWW are currently evident in the succe

application ofmobile codeanddistributed objecttechnologies. Mobile code programs which

can be transmitted across a network and executed on the client’s computer make it possible to

deliver digital objects, in either executable or serialized form across the WWW. Se

programming languages which can produce mobile code have been developed [4, 32, 33, 3

most well known and widely supported is Java [1]. Compiled Java code, known as byte-cod

be downloaded across the Web to the client where it is executed by a Java Virtual Machine

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive

library that can be accessed by the compiled code.
7NASA/TM—2000-209953

ted

quest

] or

ation

in the

er

based

ented

-

milar

ased

dels

hly

buted

it is

the

or all

t with

o as

g the

to be

osoft
Digital objects are also incorporated within the WWW infrastructure as part of distribu

simulation execution using distributed technologies, such as CORBA (Common Object Re

Broker Architecture), Java Spaces [12], Distributed Component Object Model (DCOM) [6

Java Remote Method Invocation (RMI) [35]. These technologies provide flexible communic

and activation substrates which allow objects to be stored and executed at remote locations

WWW’s heterogeneous environment.

3.2 Model Construction by Composition

Object composition obtaining new functionality by assembling a new object from oth

objects is a key feature of the object-oriented paradigm. In the last decade, component-

technologies have emerged which utilize object composition (and other existing object-ori

features) to create reusable, “off-the-shelf”software componentswhich can be combined at run

time to form complex applications. In a Web populated by digital objects, we can expect a si

approach which would enable the creation of complex models by composition. Web-b

graphical environments will permit rapid visual assembly or modification of simulation mo

with a minimum effort. Due to their well-defined interfaces, these digital objects are hig

modular, making them well-suited for placement across computer platforms as part of distri

simulations.

3.3 Digital Object Interoperability

In order to employ object composition as part of the Web-based simulation process,

critical that digital objects interoperate. Enforcement of digital object interoperability is

responsibility of the object’s component architecture, which defines standard interfaces f

objects. These interfaces make it possible to customize a simulation by replacing an objec

another object having similar functionality. This capability, which is sometimes referred t

“plug ‘n play” or “pluggability,” is essential for composing and reusing simulation models.

The selection of a component architecture is dependent on several criteria, includin

programming language and operating system used, and whether or not the object is

distributed. Existing component architectures include: the CORBA, JavaBeans [7], Micr
8NASA/TM—2000-209953

, a

the

where

n. The

nes a

.

hly

ages

jects

ss the

ecific

plex

h an

search

data to

ulation

n can

d to the

sues

lthough

ble to
Component Object Model (COM) [29], and High Level Architecture (HLA) [21]. Alternatively

component architecture may be defined by the particular simulation application in which

objects are to operate. This is often the case in domain-specific simulation environments,

the component architecture must be crafted to meet specific requirements of the domai

Onyx simulation environment, described in the following section, is such an example; it defi

component architecture which is oriented towards physical modeling of aerospace systems

3.4 Heterogeneous Modeling and Simulation

The digital objects of our Web-based simulation future will populate a Web that is hig

heterogeneous. Digital objects will certainly be developed using different programming langu

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital ob

will themselves be highly variable. Some will be based on mobile code which can move acro

Web (e.g., agents), while others will form object busses which provide services from sp

locations on the Web. Applications will become more complicated as a result, with com

multi-tier architectures becoming the standard. In order to operate effectively in suc

environment, Web-based simulation will need extensive enabling technologies such as

engines to locate appropriate digital objects and models, translators to convert models and

appropriate formats, and expert systems to guide non-experts in the use of Web-based sim

models.

4 An Example Scenario

In this section, we present a scenario illustrating how Web-based modeling and simulatio

be used in the aircraft design process. Our goal is to discuss both the technical issues relate

design, development and publication of digital objects, as well as organizational is

concerning the roles engineers and programmers play in the Web-based design process. A

the discussion is oriented towards the aircraft design process, we believe that it is applica

engineering processes used in many fields.
9NASA/TM—2000-209953

gy of

ents

ability

d visu-

er

dard

ibuted

otes

Special

in both

ive use

lutions

with

rvices,
4.1 Onyx
The modeling and simulation environment for our research is theOnyxsimulation system [26,

27]. The major features of Onyx include the following.

• A set of object classes and interfaces for representing the physical attributes and topolo

the aircraft system is included. These classes comprise an object-orientedcomponent architec-

turecapable of housing the analytical and geometric views of the various aircraft compon

employed in the design process. The architecture facilitates and ensures object interoper

among separately developed software components.

• A visual assembly interface is included for graphical creation and manipulation of aircraft

system models. It enables users to establish model design, control model execution an

alize simulation output.

• A dynamically-defined, run-timesimulation executive is included to control complex, multi-

level simulations.

• A persistence engine capable of transparently accessing geometry and data stored in eith

relational or object database management systems is included.

• A connection serviceprovides access to federated model and data repositories using stan

internet protocols. Various connection strategies to access Web- and server-based distr

objects are included.

Our goal in creating Onyx is to develop a simulation-based design system that prom

collaboration among aerospace designers and facilitates sharing of models, data and code.

emphasis is placed on developing a distributed system which fosters reuse and extension

the models and the simulation environment. To achieve these goals, we have made extens

of object-oriented technologies such asobject-oriented frameworks, software components, and

design patterns.

An object-oriented framework is a set of classes that embodies an abstract design for so

to a family of related problems [19]. Onyx is designed as a layered collection of frameworks,

individual frameworks for the visual assembly interface, persistence engine, connection se
10NASA/TM—2000-209953

efine a

ain.

ork

es to

to form

ntrol

dy of

raries

er. In

oing

of the

e

n for

loped

mbled

rsions

form

ntal

faces,

tible” as

are

andard

bjects”
simulation executive and component architecture. The set of classes in each framework d

“semi-complete” structure that captures the general functionality of the application or dom

Specific functionality is added to Onyx by inheriting from, or composing with, framew

components. In the example in the next section, we will illustrate this by deriving new class

represent the components in an aircraft engine, then assembling instances of those classes

a complete engine model.

A key characteristic of Onyx, and object-oriented frameworks in general, is its inverted co

structure. In traditional software development, the application developer writes the main bo

the application which defines a series of calls to various libraries of subroutines. These lib

provide reusable code, while the main body is customized by the application develop

framework design, the control structure is defined by the framework, with predefined calls g

to methods that the application developer writes. In this approach, the design or structure

application which is domain-specific is reused, and the specific functionality of th

application is provided by the developer. Using this approach, Onyx reduces the burde

aircraft engineers and modelers, allowing similar aircraft component models to be deve

faster and more efficiently. The concept of reuse is best illustrated for models that are asse

from a library of components (i.e., composition), and for models that are made in several ve

with minor differences (i.e., inheritance).

A major product of object-oriented design is the identification of software components self

contained software elements which can be controlled dynamically and assembled to

applications. The central step in identifying them is recognizing recurring fundame

abstractions in the domain. By identifying these abstractions and standardizing their inter

these components become interchangeable. Such components are said to be “plug-compa

they permit components to be “plugged” into frameworks without redesign. Onyx’s softw

components use a variant of the JavaBeans [7] component architecture to define st

interfaces and abstractions. These components represent the “plug-compatible, digital o

with which the Web-based models of the aircraft and its subsystems are developed.
11NASA/TM—2000-209953

e

the

re and

bject-

o are

rovide

tware

orm

. Java

ributed

puter

le and

in the

sive

odels

Onyx

er than

deal

es it

ially

rams

adds

g to
Throughout the Onyx environment, design patterns recurring solutions to problems that aris

when building software in various domains [13] are used to achieve reuse. Patterns aid

development of reusable software components and frameworks by expressing the structu

collaboration of participants in a software architecture at a level higher than source code or o

oriented design models that focus on individual objects and classes [31]. Patterns als

particularly useful for documenting software architectures and design abstractions. They p

a common and concise vocabulary which is useful in conveying the purpose of a given sof

design.

The Onyx simulation environment is designed to be both multi-tiered and platf

independent so as to provide the greatest flexibility when modeling complex aircraft systems

was chosen as the implementation language as it offers extensive class libraries, a dist

object model (i.e., Java RMI), and byte-code interpreters on a wide range of com

architectures, among other benefits. As a result, the Onyx system is extremely portab

accessible. The visual assembly interface (described below), for example, can be run

context of a Web browser, which are widely available, while computationally inten

components run on dedicated, distributed servers.

Java is also the preferred language for programming Onyx software components, as m

written in Java are easily downloaded across a network and dynamically loaded into the

environment. In cases where it is desirable or necessary to use a programming language oth

Java, software components may be accessed from Onyx using CORBA. CORBA’s ability to

with the heterogeneous nature inherent in distributed computing environments mak

particularly suitable for leveraging legacy applications not written in Java. This is espec

useful for simulation of aerospace systems in which the majority of existing analysis prog

have been written in procedural languages, such as FORTRAN and C. The use of CORBA

flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than havin

replace or abandon them.
12NASA/TM—2000-209953

ed in

rcraft.

of the

g and

ishing

work

s, and

ircraft

system

e and

ircraft

ine is

ionally.

issues.

ine

, with

essor,

ases of

mplete

nd/or

t this

l data

te the
4.2 Engine-Aircraft Integration Scenario
This scenario illustrates our vision of how Web-based modeling and simulation may be us

the process of development and integration of an aircraft subsystem within the complete ai

As stated earlier, the aircraft design process generally follows a hierarchical decomposition

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Win

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establ

the conceptual and preliminary designs for each respective component. These teams

together, exchanging information as necessary, to develop the individual component design

as the process progresses, to integrate them into a final design.

We have selected for our example the integration of the propulsion subsystem into the a

because it represents one of the more complex aspects of aircraft design. Propulsion

performance, size and weight are important factors in the overall aircraft design. Engine siz

thrust, for example, influence the number and placement of engines, which in turn affects a

safety, performance, drag, control and maintainability. Furthermore, because the eng

designed and developed by an external manufacturer i.e., an engine company this example

illustrates the challenges faced by designers separated both geographically and organizat

We intend to show how Web-based modeling and simulation can address these and other

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the eng

manufacturer are generally organized according to a physical decomposition of the engine

individual teams responsible for developing the major engine components: Fan, Compr

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, amodel author, having expertise in

the given design area, establishes a conceptual model of the component. During early ph

design, model resolution is kept relatively coarse to speed simulations and enable more co

exploration of the design space. Such a model typically consists of a set of algebraic a

linearized ordinary differential equations which describe the component’s gross behavior. A

stage in the design knowledge of component characteristics is incomplete, so empirica

gathered from rig-testing of previously developed components are scaled to approxima
13NASA/TM—2000-209953

apture

o the

ting a

3, the

Onyx

l

screte

ws

ysical

es a

that a

brief

an be

x

e

ring

ressor,

purely

. This

evelop

. The
current model. These data, commonly referred to as “performance maps,” attempt to c

component characteristics within their operating range, and serve to provide closure t

equations.

4.2.2 Component Authoring. Once a conceptual model is validated, acomponent author,

working closely with the model author, maps the model to the computational domain, crea

software component which encapsulates the model abstraction. As pointed out in section

mapping is largely dependent on the choice of component architecture being used. The

component architecture used here is based upon acontrol volumeabstraction. The use of contro

volumes is standard engineering practice, wherein the physical system is divided into di

regions of space control volumes which are then analyzed by applying conservation la

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing ph

behavior (see Fig. 3). A component architecture predicated on this approach provid

convenient and familiar mapping mechanism for modeling physical systems, and ensures

simulation component resembles the conceptual model developed by the model author. A

overview of the Onyx component architecture is presented below; a complete description c

found in ref. [26].

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Ony

architecture:Element, Port, Connectorand DomainModel (see Fig. 4). The Java interfac

Element represents a control volume, and defines the key behavior for all enginee

component classes incorporated into Onyx. It declares the core methods needed toinitialize, run

and stop model execution, as well as methods for managing attachedPort objects. Classes

implementing this interface generally represent physical components, such as a comp

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis

flexibility permits the component architecture to model a variety of physical systems.

Consider, for example, a component author in the Compressor design team wanting to d

a representative Compressor digital object for use in simulations during preliminary design
14NASA/TM—2000-209953

t the

the

fault

ment

r

ed

ergy is

the

g

ta

version

2-D

ults
author begins by defining a concrete implementation of theElement interface, such as

SimpleCompressor (see Fig. 4). Here the author extends the abstract classDefaultElement,

which captures common implementation aspects of theElement interface, as well as maintaining

a list ofPort objects associated with its subclasses. Alternatively, the author could implemen

interface directly, explicitly defining each interface method. This feature is used through

architecture to provide flexibility: the component author may select to utilize the de

functionality of the common abstract class, or inherit from another class hierarchy and imple

the interface directly.

An Element may have zero or morePort objects associated with it. The interfacePort

represent a surface on a control volume (i.e.,Element) through which some entity (e.g., mass o

energy) or information passes.Ports are generally classified by the entity being transport

across the control surface. For example, theSimpleCompressor has twoFluidPort objects

representing the fluid boundaries at the Compressor entrance and exit and aStructuralPort

object, representing the control surface on the Compressor through which mechanical en

passed (i.e., from a driving shaft). ThePort interface defines two methods to set and retrieve

data defined by thePort. These data may be stored in any type of Java Object, such asHashtable

or Vector. The common abstract class,DefaultPort, defines default functionality for these

methods, and maintains a reference to theConnector object currently connected to thePort.

The common boundary between consecutive control volumes is represented by aConnector

object. The interfaceConnector permits twoElement objects to communicate by passin

information between connectedPort objects (see Fig. 3c). It is also responsible for da

transformation and mapping in situations where the data being passed fromPorts of different

type. The need for such data transformation can range from simple situations, such as con

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis res

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis).
15NASA/TM—2000-209953

ation/

ciplines.

vior.

other

lved

esign

tion of

. The

e them

ithout

] to

able,

iate

e,

re-

tate

y of
For all but the simplest cases, the algorithms needed to perform the data transform

mapping will tend to be very complex. To improve reusability,Connector delegates

transformation/mapping responsibilities to a separateTransform object (see Fig. 3c) which

encapsulates the necessary intelligence to expand/contract data and map data across dis

TheTransform interface (see Fig 4) defines a general method,transform, which is implemented

by subclasses to carry out a particular transformation algorithm.

A similar situation is found with the mathematical model used to define component beha

As described above, the mathematical models used to describe Compressor (or any

component) behavior during preliminary design are relatively simple and may be so

analytically or using basic numerical methods. However, models used in latter phases of d

can be quite complicated. In these cases, approximate solutions are obtained by discretiza

the equations on a geometrical mesh and applying highly specialized numerical solvers

presence of these complex mathematical models and the numerical tools needed to solv

suggest that it is desirable to encapsulate these features and remove them from theElement

structure. This enhances the modularity ofElement, allowing newElement classes to be added

without regard to the mathematical model used, and conversely to add new models w

affecting theElement class. To achieve this, Onyx utilizes the Strategy design pattern [13

encapsulate the mathematical model in a separate type of object calledDomainModel (see Fig.

4). The benefit of this pattern is that families of similar algorithms become interchange

allowing the algorithm in this case theDomainModel to vary independently from the

Elements that use it. This admits the possibility of run-time selection of an appropr

DomainModel for a givenElement; however, this is currently not used in Onyx. Furthermor

encapsulating theDomainModel in a separate object also encourages the “wrapping” of p

existing, external software packages. For example, the FanDomainModel in Fig. 3d might

“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-s

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionalit
16NASA/TM—2000-209953

of the

re of

the

d a

tial

es,

y data

t in the

ts as

easily

by

y. We

g the

more

case,

ddition
existing software analysis packages to be easily integrated within an Element. Some

advantages of this concept is illustrated later in this section.

TheDomainModel interface is designed to be very general, due to the complicated natu

the various models which might be encapsulated in anElement. The intent is not to restrict the

use of any algorithm or the “wrapping” of external software packages by overly defining

DomainModel interface. Consequently, the interface defines only two methods,execute andhalt,

which are used to start and stop the execution of theDomainModel code. Additional methods are

obviously needed to access and make the data internal to theDomainModel available to the

Element, but because these are specific to the particularDomainModel structure, they are not

included in the interface. For our example, the component author has define

SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differen

equations and performance maps needed to model compressor behavior.

After the Compressor class definitions(i.e.,SimpleCompressor, FluidPort, StructuralPort

and SimpleCompressorDomainModel) are established, the component author compil

verifies and tests their operation. When complete, the class’ byte-code files and any auxiliar

(e.g., performance maps) are combined to form a single Compressor software componen

form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating componen

they can be compressed to reduce file size, digitally signed for added security, and

transferred across the Web.

4.2.4 Publishing the Component. The Compressor software component is “published”

deploying it on a Web server where it can be accessed by others in the engine compan

envision that each engine component design team will maintain its own Web server, hostin

software components it has developed (see Figure 5). However, it may be easier and

efficient to maintain all components on a single company-wide Web server. In either

publishing the software component is the responsibility of thecomponent deployer, who has

expertise in system and Web server administration. This expertise is necessary, since, in a
17NASA/TM—2000-209953

le for

tion

ion. A

to find

ented

ming

k up an

ploy

ing it

y the

le, the

y and

onent

nces to

and

day.

ining

nents

t their

that

ction is

public

ple),

in a
to simply placing components on a Web server, the component deployer is responsib

addressing server configuration issues of component identification and security.

4.2.5 Accessing Components. One of the problems facing a user of a Web-based simula

system is locating appropriate software components, objects or data, for use in a simulat

text-based search engine, similar to those used on the Web today, is one possible method

objects and components [9]. However, these tools suffer from the fact that they are ori

towards HTML documents, rather than objects. A more object-oriented approach is to usenaming

anddirectory services to catalog available simulation objects and components. Using a na

service, the component deployer associates names with objects, providing the means to loo

object given its name. CORBA and RMI are examples of distributed object systems that em

naming services. Directory services extend naming services by adding attributes, mak

possible to search for objects given their attributes. These attributes may be used b

component deployer to describe and hierarchically organize each component. For examp

attributes may be specified which describe the component class name, model fidelit

discipline, model author, or version number, as well as the manufacturer’s name and comp

group, to name a few. Queries can be made to the directory service to find and return refere

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38]

NetWare Directory Service (NDS) [23] are examples of directory services which are used to

Another important responsibility of the component deployer is establishing and mainta

security policies controlling access to published software components. These compo

represent significant investments in both time and money for the manufacturer. To protec

intellectual property against theft through reverse engineering, it is important to ensure

relevant data and software components can only be accessed by authorized users. Prote

accomplished through the use ofauthenticationandauthorizationmechanisms. Authentication

refers to the presence of an authentication protocol (e.g., password, Kerberos ticket [24],or

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the princi

while authorization grants access only if the principles identity (credentials) is included
18NASA/TM—2000-209953

ased

art of

anisms,

 read.

ecurity

et or

the

isms,

ary

es

model

ngine

stored

orts

ervice

[18].

widely

d to

ervices

before

has

entire
specific list (the access control list), or if the principle can assume a specific role (role-b

authorization). Both authentication and authorization mechanisms are typically included as p

the naming and directory services, or as part of the Web server services. Using these mech

the component deployer can control who gains access to the server, and what data can be

Communication channels between a client and the Web server are also a source of s

concern. If the communication channel is a dedicated network connection (i.e., intran

extranet), security problems are minimized due to physical isolation. If, however,

communication channel is the Web, physical isolation is impossible, and encryption mechan

such as Secure Socket Layers (SSL) [15], must be used.

4.2.6 Building the Engine. Once the engine component design teams publish their prelimin

component objects, asystem integrator, having expertise in system-level engine design, combin

individual component objects to create a first-order engine model. The system-level engine

is developed using Onyx’s visual assembly interface. Icons, representing individual e

components (i.e.,Elements), are selected from acomponent browser, dragged into a workspace

window, and interconnected to form a schematic diagram (see Fig. 6).

The component browser, as its name implies, is a tool for browsing the objects and data

in a naming or directory service (see bottom-right corner of Fig. 6). Onyx currently supp

access to common naming and directory services, such as NDS, LDAP, CORBA Naming S

(COS Naming), and RMI Registry, through the Java Naming and Directory Interface (JNDI)

JNDI is an API that provides an abstraction that represents elements common to the most

available naming and directory services. JNDI also allows different services to be linke

together to form a single logical namespace called afederatednaming service. Using the

component browser, Onyx users are ale to navigate across multiple naming and directory s

to locate simulation data, objects and components.

For security purposes, the component browser requires users to authenticate themselves

they can retrieve any information from a naming or directory service. Once authentication

been successfully completed, the user can browse or search (using attribute keywords) the
19NASA/TM—2000-209953

ation

rvice

from

neous

lected

nents

ed from

oaded

other

object

ponent

d to

n.

both a

alled a

and

esign

dels,

Such

ased

beled

s one

n

namespace (subject to any authorization restrictions). Authentication and authoriz

capabilities are provided through JNDI and the Java Authentication and Authorization Se

(JAAS) [22] framework. These tools allow the component browser to remain independent

the underlying security services, which is an important concern when working in a heteroge

computing environment such as the Web.

Dragging an icon from the component browser to the workspace window causes the se

software component to be downloaded from the server to the client machine. Compo

comprised entirely of Java classes, such as the Compressor described above, are download

a Web server to the local file system where the byte-codes are extracted from the JAR file, l

into the Java Virtual Machine and instantiated for use in Onyx. Components developed in

programming languages are not downloaded, but remain on the server. Instead, a proxy

(stub), representing the component, is downloaded and used to connect to the remote com

using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The nee

use remote components in the aircraft design process is discussed at the end of this sectio

Onyx supports the creation of hierarchical component models, and an icon can represent

single component or an assembly of components. A component with subcomponents is c

compositeor structuredcomponent. Components that are not structured are calledprimitive

components, since they are typically defined in terms of primitives such as variables

equations. Composite components are represented by theCompositeElement class, which is

part of theElement hierarchy (see Fig. 4). The class structure, based on the Composite d

pattern [13], effectively captures the part-whole hierarchical structure of the component mo

and allows the uniform treatment of both individual objects and compositions of objects.

treatment is essential for providing the object interoperability needed to perform Web-b

model construction by composition.

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon la

Core is a composite of components which are displayed in the lower schematic. Each icon ha

or more small boxes on its perimeter to represent itsPorts. Connecting lines are drawn betwee
20NASA/TM—2000-209953

icon

-

visual

iting

ation

d

nce of

ftware

ments

use in

s a

ngine

engine

ngine

stem,

model

ee Fig.

n then

the

. The

rlying

h the
the ports on different icons by dragging the mouse. AConnector object having the correct

Transform object needed to connect the two ports is created automatically by Onyx. Each

has a popup menu which can be used “customize” the attributes of itsElement, Port and

DomainModel objects. When selected, a graphicalCustomizer object is displayed (see upper

right corner of Fig. 6), which can be used to view or edit the selected objects attributes. The

assembly interface also provides tools for plotting (see the lower-left corner of Fig. 6), ed

files, and browsing on-line documentation. More information on the design and implement

of the visual assembly interface can be found in ref. [26].

4.2.7 Engine-Aircraft Model Integration. The system integrator, working with the model an

component authors, performs a series of simulations to evaluate and improve the performa

the first-order engine model. Component conceptual models are refined and new so

components developed, deployed and integrated, until all preliminary engine design require

are satisfied. The engine model is then “passed” to engineers in the aircraft design group for

their design process. This is accomplished by publishing the engine model a

CompositeElement object in the same process as described above, except that the e

component is deployed on a Web server accessible from networked locations outside the

company (i.e., extranet). In the aircraft company, airframe designers use the preliminary e

component (now a sub-component in the airframe system model) to design the control sy

size the airframe and design the planform (see Fig 5). Anaircraft system integrator takes the

engine component and, using the Onyx visual assembly interface, assembles an airframe

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (s

6) in a process similar to the one described for the Compressor component. This model ca

be used to simulate gross aircraft performance.

4.2.8 Hierarchical Models. While the preliminary engine component is being used by

aircraft design teams, the engine component teams continue to refine their designs

refinement requires sophisticated models which give a detailed description of the unde

physical processes within the component. For instance, although the air flow throug
21NASA/TM—2000-209953

early

ed by

ressor

ary to

g the

ls, or

dels

ressor

CFD)

suited

dels,

The

ows a

t the

tial

erical

g

their

edge,

dels

fidelity

in the

nally

elity

. This
Compressor might be adequately modeled as a quasi-one-dimensional, inviscid fluid in

phases of design, the actual fluid flow is unsteady, three-dimensional (3-D) and characteriz

turbulence, boundary-layers and shocks. Similarly, at an early stage of design the Comp

blades can be modeled as rigid, but for more detailed investigations it may be necess

account for blade deformation due to material elasticity and thermal loading. Thus, simulatin

behavior of complex components requires the development of a hierarchy of mode

multimodel, which represent the component at differing levels of abstraction [10]. These mo

may include: lumped-parameter models, such as the one used to model the Comp

component in preliminary design, or distributed parameter models such as fluid dynamics (

or structural mechanics (FEA). Each model is implemented using a numerical method best

to the application; e.g., an ordinary differential equation solver (ODE) for state-space mo

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics.

specific numerical method implementation is encapsulated within the model. Figure 2c sh

multimodel representing the Compressor blade and flowfield at differing levels of fidelity. A

lowest level of fidelity, both the blade and flowfield are modeled using simple differen

equations and empirical data. At higher fidelities, both are modeled using sophisticated num

methods such as finite element analysis or computational fluid dynamics.

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modelin

and simulation is important because it allows designers to selectively refine the fidelity of

model given the constraints (i.e., level of detail needed, the objective, the available knowl

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity mo

cannot be deployed in the same manner as the simple models described previously. High-

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run

clients Java virtual machine. Even if this were possible, the packages are computatio

intensive, making them unsuitable for execution on the client computer. Therefore, high-fid

models are deployed as remote objects using distributed object services such as CORBA

approach offers several advantages:
22NASA/TM—2000-209953

ors

/or

riate

 com-

rated

engine

ould

these

ngine

tion of

esign

onent

emote

arallel

ce the

igners

) and

ansion

owing

rated

ers to

ttack.

ressor

vide
(1) Ability to distribute a computationally intensive process across a number of process

(2) Ability to leverage legacy code limited to platforms offering specific programming and

operating systems by “wrapping” it in a remote object

(3) Specialization of computer execution environment (i.e., placement of codes on approp

computing platforms; such as visualization codes on high-end graphic workstations;

putationally intensive codes on supercomputers, etc.).

As with the preliminary component models, the high-fidelity component models can be integ

into a system-level engine model by the engine system integrator, and used to simulate

operation. An engine simulation using a model composed of high-fidelity components w

provide detailed knowledge of the interaction effects between its components. Although

interactions can be critical to engine performance, they are not currently quantifiable by e

designers and therefore are unknown until after expensive hardware testing [5, 14]. Evalua

these effects will allow engine engineers to make better design decisions earlier in the d

process, before the principle design features have been frozen. Each high-fidelity comp

would perform its computations using a wrapped analysis package located on one or more r

computers. For example, in Fig. 5, the Fan component is run on a supercomputer, while a p

software package is used to simulate Compressor operation using a cluster of computers.

The high-fidelity engine model is also a valuable resource to aircraft designers, and on

model is published, can be used in the aircraft model. The engine model allows aircraft des

to investigate the flowfield around aircraft nacelle (the cowling structure around the engine

fuselage. Detailed descriptions of flow features at the engine exit (e.g., shocks and exp

waves), could allow aircraft designers to better predict the drag caused by the jet exhaust fl

along the aircraft surface. Engine designers would also benefit from a high-fidelity, integ

engine-aircraft simulation. For example, an integrated simulation could allow engine design

study distortions in the airflow entering the engine when the aircraft is at a high angle of a

Evaluation of this operating condition is important because distortions can cause the comp

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would pro
23NASA/TM—2000-209953

uickly

lines,

ble to

ized.

roups

design

e. These

plex

ftware

rther

e the

ensed

b to

puting

bjects

igital

aking

odels,

s of

eling

s the
valuable information which engine and aircraft engineers could use to better and more q

design the aircraft.

5 Concluding Remarks

The design of complex systems involves the work of many specialists in various discip

each dependent on the work of other groups. When a single designer or core team is a

control the entire design process, difficulties in communication and organization are minim

However, as design problems become more complex, the number and size of disciplinary g

increases, and it becomes more difficult for a central group to manage the process. As the

process becomes more decentralized, communications requirements become more sever

difficulties are particularly evident in the design of aircraft, a process that involves com

analyses, many disciplines, and a large design space [20]. The lack of enabling so

supporting disciplinary analysis by geographically dispersed engineering groups fu

aggravates these problems.

In this paper we have argued that Web-based simulation has the potential to improv

aircraft design process, allowing companies to become more competitive through cond

cycle times and better products. This improvement is due, in part, to the ability of the We

support collaborative modeling and distributed model execution in a heterogeneous com

environment. A central focus of this strategy is the move towards a Web based on digital o

which can be published and reused to form new models.

Using a component architecture such as the one defined in the Onyx environment, d

objects can be developed which represent the hierarchical topology of physical systems, m

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multim

including geometry models, multidisciplinary models and models having multiple level

fidelity. Such models are ideal for concurrent design environments, since all of the mod

information is available in one place. The component architecture class structure provide
24NASA/TM—2000-209953

ing

by

ed to

simple

Both

rvices

ty, as

non-

ava, it

tual

ystem

craft

which

22,

-line

ion
capability to wrap existing software packages. This is extremely important in provid

collaborative and integrative environment for the aircraft design process.

A World-Wide Web populated with digital objects provides the foundation for modeling

composition. Onyx’s component architecture defines the standard interfaces need

dynamically compose new objects and the visual assembly interface makes composition

and easy. This promotes model reuse, as well as reducing new model development time.

The Onyx environment supports the distribution of simulation models across the Web.

Web-based model distribution (in the case of Java-based models) and distributed se

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx’s usabili

models can be placed virtually anywhere. The CORBA bindings make it possible to integrate

Java language distributed objects and legacy code. Also, since Onyx is written entirely in J

is portable without modifications to any computing platform which supports the Java Vir

Machine. Heterogeneous computing support makes the Onyx Web-based simulation s

extremely viable for use in the heterogeneous computing environments typical of air

companies. Most importantly, it allows access to existing legacy codes and access to codes

must operate on specific architectures or operating systems.

References

[1] Arnold, K. and Gosling, J., 1996,The Java Programming Language, Addison Wesley

Publishing Company, Inc., Reading, MA.

[2] Berners-Lee, T., 1996, “WWW: Past, Present, and Future,”Computer, 29(10) p. 69.

[3] Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973,Simula begin, Petrocelli

Charter, New York.

[4] Cardelli, L., 1994, "Obliq: A Language with Distributed Scope," Research Report 1

Digital Equipment Corporation Systems Research Center, Palo Alto, CA. On

document. Available athttp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-

122. html.

[5] Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propuls
25NASA/TM—2000-209953

,

d

el

f

g,

Low

ey

rnet

IAA
System Simulation,”Computing Systems in Engineering, Vol. 2, pp. 357-364

[6] Eddon, G. and Eddon, H., 1998,Inside Distributed COM, Microsoft Press, Redmond

Washington.

[7] Englander, R., 1997,Developing Java Beans, O’Reilly & Associates, Inc., Sebastopol, CA.

[8] Fishwick, P.A., 1996, “Web-Based Simulation: Some Personal Observations,"Proceedings

of the 1996 Winter Simulation Conference, J.M. Charnes, D.J. Morrice, D.T. Brunner an

J.J. Swaim (eds.), pp. 772-779, Coronado, CA.

[9] Fishwick, P.A., 1998, “Issues with Web-Publishable Digital Objects,"Proceedings of SPIE:

Enabling Technologies for Simulation Science II, pp. 136-142, Orlando, FL, April 14-16.

[10] Fishwick P. A. and Zeigler, B. P., 1992, “A Multimodel Methodology for Qualitative Mod

Engineering,”ACM Transactions on Modeling and Computer Simulation, Vol. 12, pp. 52-

81.

[11] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds., 1998,Proceedings of the 1998

International Conference on Web-Based Modeling and Simulation, SCS Simulation Series

30(1).

[12] Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces Principles, Patterns, and

Practice, Addison-Wesley.

[13] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995,Design Patterns: Elements o

Reusable Object-Oriented Software, Addison Wesley Publishing Company, Inc., Readin

MA.

[14] Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, “Energy Efficient Engine

Pressure Subsystem Aerodynamic Analysis,” AIAA Paper No. 98-3119.

[15] Hickman, K.E.B., 1995,The SSL Protocol. Available athttp://home.netscape.com/eng/security/

SSL_2.html.

[16] Housley, R., Ford, W., Polk, T., and Solo, D., 1999, “Internet X.509 Public K

Infrastructure Certificate and CRL Profile. Request for Comments 2459,” Inte

Engineering Task Force. Available athttp://www.imc.org/rfc2459.

[17] Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” A

Paper No. 97-0641.

[18] Java Naming and Directory Interface. Available athttp://java.sun.com/products/jndi/index.html.

[19] Johnson R. E. and Foote, B., 1988, “Designing Reusable Classes,The Journal Of Object-
26NASA/TM—2000-209953

ry

n

And

l

uter

tion

rces

n of

ed

nd

bal

ject-

n for
Oriented Programming,” 1(2), pp. 22-35.

[20] Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I., 1994, “Multidisciplina

Optimization Methods for Aircraft Preliminary Design,” AIAA Paper No. 94-4325.

[21] Kuhl, F., Weatherly, R. and Dahmann, J., 1999,Creating Computer Simulation Systems: A

Introduction to the High Level Architecture, Prentice Hall.

[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, “User Authentication

Authorization In The Java Platform,” To appear inProceedings of the 15th Annua

Computer Security Applications Conference, Phoenix, AZ.

[23] Lindberg, K.J.P., 1998,Novell’s Netware 5 Administrator’s Handbook, IDG Books

Worldwide.

[24] Neuman, B.C. and Ts’o, T., 1994, “Kerberos: An Authentication Service for Comp

Networks,”IEEE Communications, 32(9), pp.33-38.

[25] Page, E.H. and Opper, J.M., 1999, “Investigating the Application of Web-Based Simula

Principles within the Architecture for a Next-Generation Computer Generated Fo

Model,” Future Generation Computer Systems, to appear.

[26] Reed, J.A., 1998, “Onyx: An Object-Oriented Framework for Computational Simulatio

Gas Turbine Systems,” Ph.D. dissertation, The University of Toledo, Toledo, Ohio.

[27] Reed, J.A., and Afjeh, A.A., 1998, “An Object-Oriented Framework for Distribut

Computational Simulation of Aerospace Propulsion Systems,”Proceedings of the 4th

USENIX Conference on Object-Oriented Technologies and Systems (COOTS), Santa Fe,

New Mexico.

[28] Ridlon, S. A., 1996, “A Software Framework for Enabling Multidisciplinary Analysis a

Optimization,” AIAA Paper No. 96-4133.

[29] Rogerson, D., 1996,Inside COM, Microsoft Press, Redmond, Washington.

[30] Schatz, B.R., and Hardin, J.B., 1994, “NCSA Mosaic and the World Wide Web: Glo

Hypermedia Protocols for the Internet,”Science, 265, p. 895.

[31] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Ob

Oriented Communications Software,”Handbook of Programming Languages, Volume I, P.

Salus, ed., MacMillian Computer Publishing.

[32] Smith, R.B., and Ungar, D., 1995, "Programming as an Experience: The Inspiratio

Self," Proceedings of ECOOP’95.
27NASA/TM—2000-209953

a

ology

d

For
[33] Watters, A., van Rossum, G., and Ahlstrom, J., 1996,Internet Programming with Python,

MIS Press/Henry Holt Publishers.

[34] Wirth, N. and Gutknecht, J., 1989, "The Oberon System,"Software: Updated Practice and

Experience, 19(9), p. 857.

[35] Wollrath, A., Riggs, R. and Waldo, J., 1996, “A Distributed Object Model for the Jav

System,”Proceedings of the Second USENIX Conference on Object-Oriented Techn

and Systems (COOTS), pp. 219-231.

[36] Vinoski, S, 1997, “CORBA: Integrating Diverse Applications Within Distribute

Heterogeneous Environments,”IEEE Communications, 35(2), pp. 46–55.

[37] Voyager, 1997, “Voyager: The Agent ORB for Java” Online document. Available athttp://

www.objectspace.com/.

[38] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol", Request

Comments 1777,” Internet Engineering Task Force. Available athttp://www.ietf.org/rfc/

rfc1777.txt.

[39] Zimmerman, P, 1994,PGP User’s Guide, MIT Press, Cambridge, 1994.
28NASA/TM—2000-209953

Conceptual
Design

Aerodynamic
Analysis

Propulsion
Analysis

Structural
Analysis

CAD
Definition

Experimental
Testing

Model
Fabrication

Detailed Final
Design

M
aj

or
 D

es
ig

n
Lo

op

M
in

or
 D

es
ig

n
Lo

op

Additional
Disciplines

Figure 1: The Aircraft Design Process. The process
involves conceptual, preliminary and detailed final design
phases. The preliminary design phase includes both major
and minor design loops. In the minor design loop, separate
disciplinary analysis such as aerodynamic, propulsion,
and structural analysis are carried out. Additional
disciplinary analysis, such as controls, loading, stability,
acoustics, etc. have been omitted for clarity. Once a design
is converged upon in the minor loop, it is experimentally
tested in the major design loop. After convergence of the
major design loop, the detailed final design phase is
executed.

29NASA/TM—2000-209953

(a)

(c)

FanInlet Combustor Mixer TurbineCompressor

0-D

1-D

3-D

2-D

FEA

F
id

e
lit

y

(b)

CFD

FEA Disk Model

FEA

Performance
Maps

2-D Grid

Velocity
Diagram

Beam Model

Figure 2: (a) Decomposition of aircraft into high-level components; (b)
decomposition of engine component; and (c) collection of models (multimodels) at
differing levels of fidelity and discipline for Compressor component.

RudderEngineLand. Gear Fuselage Wing Elevator

Empirical
Performance
Maps

Empirical

CFD

30NASA/TM—2000-209953

Solver

Element

DomainDomain
ModelModel

Transform

Connector

t∂
∂ρ ρV()∇•–=

t∂
∂ ρV() ρVV()∇•+ p T∇•+()∇–=

t∂
∂ ρe() ρeV q Π V•+ +()∇•–=

Conservation Equations
continuity

momentum

energy

Figure 3: Mapping of engine physical domain to computational framework.
(a) Engine is decomposed into separate components, such as the Fan and
Compressor. Component control volumes are defined (b), with behavior
defined by conservation laws. Components are represented in Onyx as
Elements (c), whose Ports are connected by Connectors. Component behavior
is defined by a DomainModel (d) which may apply numerical discretization
methods to solve the conservation equations. Data exchange at control volume
boundaries is passed via Ports and Connectors, with multifidelity and
interdisciplinary mapping handled by Transform objects.

(a)

(b)

(c)

(d)

3-D

Structural
Port

Control
Volume

Solver

Domain ModelDomain Model2-D

m
ap

pi
ng

Control
Volume

CL

Fluid
Port

Fan Compressor

31NASA/TM—2000-209953

ports

model
children

Element

+ init()
+ run()
+ stop()
+ add()
+ remove()
+ addPort()
+ remotePort()
+ getPorts()

DefaultElement

+ init()
+ run()
+ stop()
+ add()
+ remove()
+ addPort()
+ remotePort()
+ getPorts()

CompositeElement

+ getElementInfo()
+ init()
+ run()

SimpleCompressor

+ getElementInfo()
+ init()
+ run()

forall c in children
 c.run();

model.execute();

+ getElementInfo()

+ stop()+ stop()

DomainModel

+ execute()
+ halt()

DefaultDomainModel

+ execute()
+ halt()

SimpleCompressorDomainModel

+ execute()
+ halt()

CFDCompessorDomainModel

+ execute()
+ halt()

FemCompressorDomainModel

+ execute()
+ halt()

Port

+ getDataSet()
+ putDataSet()

DefaultPort

+ getDataSet()
+ putDataSet()

connector

FluidPort

+ getDataSet()
+ putDataSet()

StructuralPort

+ getDataSet()
+ putDataSet()

OneDFluidPort

+ getDataSet()
+ putDataSet()

ZeroDFluidPort

+ getDataSet()
+ putDataSet()

OneDStructuralPort

+ getDataSet()
+ putDataSet()

ZeroDStructuralPort

+ getDataSet()
+ putDataSet()

port1
transform

DefaultConnector

+ getDataSet()
+ putDataSet()

Connector

+ getDataSet()
+ putDataSet()

Transform

+ transform()

port2

DefaultTransform

+ transform()

Fluid1Dto2D

+ transform()

Fluid2Dto3D

+ transform()

1DThermaltoStruct

+ transform()

ComressorDomainModel

+ execute()
+ halt()

interface

interface

interface

interface

interface

Figure 4: A portion of the Onyx component architecture class structure.

32NASA/TM—2000-209953

Figure 5: Exchange of digital objects in a Web-based simulation environment.

Onyx

Model
Author

Component
Deployer

Naming/
Directory
Server

Engine Manufacturer

Compressor

Component
Author

Model

Compressor
Component

Compressor
Design Team
Server

Computing
Cluster

Component
Deployer

System
Integrator

Engine
Component

bind Compressor

lookup

Engine
Company
Server

Model
Author

Component
Deployer

Mixer

Component
Author

Model

Mixer
Component

Mixer Design
Team Server

bind Mixer

Model
Author

Component
Deployer

Fan

Component
Author

Model

Fan
Component

Fan Design
Team Server

bind Fan

Supercomputer

Onyx
System
Integrator

Aircraft Manufacturer

Fuselage Design
Team Server

Wing Design
Team Server

Rudder Design
Team Server

Naming/
Directory
Server

lookup

bind Rudderbind Wing
bind Fuselage

Compressor Design Team Mixer Design Team Fan Design Team

33NASA/TM—2000-209953

Figure 6: Overview of Onyx Visual Assembly Interface.

34NASA/TM—2000-209953

This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

May 2000

NASA TM—2000-209953

E–12209

WU–509–10–31–00

40

A03

Improving the Aircraft Design Process Using Web-based Modeling
and Simulation

John A. Reed, Gregory J. Follen, and Abdollah A. Afjeh

Web-based simulation; Aircraft design; Distributed simulation; Java™; Object-oriented

Unclassified -Unlimited
Subject Categories: 01, 05 and 07 Distribution: Nonstandard

This work was supported by the High Performance Computing and Communication Project (HPCCP) at the NASA
Glenn Research Center. John A. Reed, and Abdollah A. Afjeh, The University of Toledo, 2801 West Bancroft Street,
Toledo, Ohio 43606, (work funded under NASA Grant NAG3–2019); Gregory J. Follen, NASA Glenn Research Center.
Responsible person, Gregory J. Follen, organization code 2900, (216) 433–5193.

Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promis-
ing means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced
multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing
platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative
composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the
potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and
complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

	E-12209 pp 1-34.pdf
	Improving the Aircraft Design Process Using Web-based Modeling and Simulation
	John A. Reed††, Gregory J. Follen‡, and Abdollah A. Afjeh†
	1 Introduction
	2 The Aircraft Design Process
	(1) Lack of interoperability. Numerous software packages æ CAD, solid modeling, FEA, CFD, visuali...
	(2) Heterogeneous computing environments. The aircraft design computing environment is extremely ...
	(3) Geographically separated design groups. Multidisciplinary design and analysis is frequently c...

	3 Principles of Web-based Simulation
	3.1 Digital Objects.
	3.2 Model Construction by Composition
	3.3 Digital Object Interoperability
	3.4 Heterogeneous Modeling and Simulation

	4 An Example Scenario
	4.1 Onyx
	4.2 Engine-Aircraft Integration Scenario
	(1) Ability to distribute a computationally intensive process across a number of processors
	(2) Ability to leverage legacy code limited to platforms offering specific programming and/or ope...
	(3) Specialization of computer execution environment (i.e., placement of codes on appropriate com...

	5 Concluding Remarks
	References
	[1] Arnold, K. and Gosling, J., 1996, The Java Programming Language, Addison Wesley Publishing Co...
	[2] Berners-Lee, T., 1996, “WWW: Past, Present, and Future,” Computer, 29(10) p. 69.
	[3] Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973, Simula begin, Petrocelli Charte...
	[4] Cardelli, L., 1994, "Obliq: A Language with Distributed Scope," Research Report 122, Digital ...
	[5] Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propulsion Sys...
	[6] Eddon, G. and Eddon, H., 1998, Inside Distributed COM, Microsoft Press, Redmond, Washington.
	[7] Englander, R., 1997, Developing Java Beans, O’Reilly & Associates, Inc., Sebastopol, CA.
	[8] Fishwick, P.A., 1996, “Web-Based Simulation: Some Personal Observations," Proceedings of the ...
	[9] Fishwick, P.A., 1998, “Issues with Web-Publishable Digital Objects," Proceedings of SPIE: Ena...
	[10] Fishwick P. A. and Zeigler, B. P., 1992, “A Multimodel Methodology for Qualitative Model Eng...
	[11] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds., 1998, Proceedings of the 1998 Internationa...
	[12] Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces‘ Principles, Patterns, and Practic...
	[13] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, Design Patterns: Elements of Reusa...
	[14] Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, “Energy Efficient Engine Low Pr...
	[15] Hickman, K.E.B., 1995, The SSL Protocol. Available at http://home.netscape.com/eng/security/...
	[16] Housley, R., Ford, W., Polk, T., and Solo, D., 1999, “Internet X.509 Public Key Infrastructu...
	[17] Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” AIAA Paper No. 9...
	[18] Java Naming and Directory Interface. Available at http://java.sun.com/products/jndi/index.html.
	[19] Johnson R. E. and Foote, B., 1988, “Designing Reusable Classes, The Journal Of Object- Orien...
	[20] Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I., 1994, “Multidisciplinary Optimiz...
	[21] Kuhl, F., Weatherly, R. and Dahmann, J., 1999, Creating Computer Simulation Systems: An Intr...
	[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, “User Authentication And Au...
	[23] Lindberg, K.J.P., 1998, Novell’s Netware 5 Administrator’s Handbook, IDG Books Worldwide.
	[24] Neuman, B.C. and Ts’o, T., 1994, “Kerberos: An Authentication Service for Computer Networks,...
	[25] Page, E.H. and Opper, J.M., 1999, “Investigating the Application of Web-Based Simulation Pri...
	[26] Reed, J.A., 1998, “Onyx: An Object-Oriented Framework for Computational Simulation of Gas Tu...
	[27] Reed, J.A., and Afjeh, A.A., 1998, “An Object-Oriented Framework for Distributed Computation...
	[28] Ridlon, S. A., 1996, “A Software Framework for Enabling Multidisciplinary Analysis and Optim...
	[29] Rogerson, D., 1996, Inside COM, Microsoft Press, Redmond, Washington.
	[30] Schatz, B.R., and Hardin, J.B., 1994, “NCSA Mosaic and the World Wide Web: Global Hypermedia...
	[31] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Object- Oriented C...
	[32] Smith, R.B., and Ungar, D., 1995, "Programming as an Experience: The Inspiration for Self," ...
	[33] Watters, A., van Rossum, G., and Ahlstrom, J., 1996, Internet Programming with Python, MIS P...
	[34] Wirth, N. and Gutknecht, J., 1989, "The Oberon System," Software: Updated Practice and Exper...
	[35] Wollrath, A., Riggs, R. and Waldo, J., 1996, “A Distributed Object Model for the Java‘ Syste...
	[36] Vinoski, S, 1997, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous ...
	[37] Voyager, 1997, “Voyager: The Agent ORB for Java” Online document. Available at http:// www.o...
	[38] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol", Request For Com...
	[39] Zimmerman, P, 1994, PGP User’s Guide, MIT Press, Cambridge, 1994.

	final-tomacs2.pdf
	Improving the Aircraft Design Process Using Web-based Modeling and Simulation
	John A. Reed††, Gregory J. Follen‡, and Abdollah A. Afjeh†
	1 Introduction
	2 The Aircraft Design Process
	(1) Lack of interoperability. Numerous software packages æ CAD, solid modeling, FEA, CFD, visuali...
	(2) Heterogeneous computing environments. The aircraft design computing environment is extremely ...
	(3) Geographically separated design groups. Multidisciplinary design and analysis is frequently c...

	3 Principles of Web-based Simulation
	3.1 Digital Objects.
	3.2 Model Construction by Composition
	3.3 Digital Object Interoperability
	3.4 Heterogeneous Modeling and Simulation

	4 An Example Scenario
	4.1 Onyx
	4.2 Engine-Aircraft Integration Scenario
	(1) Ability to distribute a computationally intensive process across a number of processors
	(2) Ability to leverage legacy code limited to platforms offering specific programming and/or ope...
	(3) Specialization of computer execution environment (i.e., placement of codes on appropriate com...

	5 Concluding Remarks
	References
	[1] Arnold, K. and Gosling, J., 1996, The Java Programming Language, Addison Wesley Publishing Co...
	[2] Berners-Lee, T., 1996, “WWW: Past, Present, and Future,” Computer, 29(10) p. 69.
	[3] Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973, Simula begin, Petrocelli Charte...
	[4] Cardelli, L., 1994, "Obliq: A Language with Distributed Scope," Research Report 122, Digital ...
	[5] Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propulsion Sys...
	[6] Eddon, G. and Eddon, H., 1998, Inside Distributed COM, Microsoft Press, Redmond, Washington.
	[7] Englander, R., 1997, Developing Java Beans, O’Reilly & Associates, Inc., Sebastopol, CA.
	[8] Fishwick, P.A., 1996, “Web-Based Simulation: Some Personal Observations," Proceedings of the ...
	[9] Fishwick, P.A., 1998, “Issues with Web-Publishable Digital Objects," Proceedings of SPIE: Ena...
	[10] Fishwick P. A. and Zeigler, B. P., 1992, “A Multimodel Methodology for Qualitative Model Eng...
	[11] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds., 1998, Proceedings of the 1998 Internationa...
	[12] Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces‘ Principles, Patterns, and Practic...
	[13] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, Design Patterns: Elements of Reusa...
	[14] Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, “Energy Efficient Engine Low Pr...
	[15] Hickman, K.E.B., 1995, The SSL Protocol. Available at http://home.netscape.com/eng/security/...
	[16] Housley, R., Ford, W., Polk, T., and Solo, D., 1999, “Internet X.509 Public Key Infrastructu...
	[17] Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” AIAA Paper No. 9...
	[18] Java Naming and Directory Interface. Available at http://java.sun.com/products/jndi/index.html.
	[19] Johnson R. E. and Foote, B., 1988, “Designing Reusable Classes, The Journal Of Object- Orien...
	[20] Kroo, I., Altus, S., Braun, R., Gage, P., and Sobieski, I., 1994, “Multidisciplinary Optimiz...
	[21] Kuhl, F., Weatherly, R. and Dahmann, J., 1999, Creating Computer Simulation Systems: An Intr...
	[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, “User Authentication And Au...
	[23] Lindberg, K.J.P., 1998, Novell’s Netware 5 Administrator’s Handbook, IDG Books Worldwide.
	[24] Neuman, B.C. and Ts’o, T., 1994, “Kerberos: An Authentication Service for Computer Networks,...
	[25] Page, E.H. and Opper, J.M., 1999, “Investigating the Application of Web-Based Simulation Pri...
	[26] Reed, J.A., 1998, “Onyx: An Object-Oriented Framework for Computational Simulation of Gas Tu...
	[27] Reed, J.A., and Afjeh, A.A., 1998, “An Object-Oriented Framework for Distributed Computation...
	[28] Ridlon, S. A., 1996, “A Software Framework for Enabling Multidisciplinary Analysis and Optim...
	[29] Rogerson, D., 1996, Inside COM, Microsoft Press, Redmond, Washington.
	[30] Schatz, B.R., and Hardin, J.B., 1994, “NCSA Mosaic and the World Wide Web: Global Hypermedia...
	[31] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Object- Oriented C...
	[32] Smith, R.B., and Ungar, D., 1995, "Programming as an Experience: The Inspiration for Self," ...
	[33] Watters, A., van Rossum, G., and Ahlstrom, J., 1996, Internet Programming with Python, MIS P...
	[34] Wirth, N. and Gutknecht, J., 1989, "The Oberon System," Software: Updated Practice and Exper...
	[35] Wollrath, A., Riggs, R. and Waldo, J., 1996, “A Distributed Object Model for the Java‘ Syste...
	[36] Vinoski, S, 1997, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous ...
	[37] Voyager, 1997, “Voyager: The Agent ORB for Java” Online document. Available at http:// www.o...
	[38] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol", Request For Com...
	[39] Zimmerman, P, 1994, PGP User’s Guide, MIT Press, Cambridge, 1994.

